• $
您所在的位置:首页 > 信息动态  > 公司动态
新疆快速门厂家深度学习奏响智能视频分析技术新乐章
来源:www.xjktmy.com 发布时间:2017/10/14 16:57:46

新疆快速门厂家深度学习奏响智能视频分析技术新乐章。在2017年两会热词中,被誉为互联网下一个风口的人工智能,成为两会期间大众的关注热点,与创业紧紧联系在一起,成为创业者的新宠。同时,网友也热衷于深扒人工智能背后的“黑科技”,深度学习技术也因此成为关注点聚焦。其实,深度学习和安防搭配食用更美味。

随着各地视频接入规模的迅猛增长及视频监控对高清、智能、联网的要求越来越高,每天产生的数据量正以惊人的速度在不停增长。视频监控正迎来全新的大数据时代,数据越来越成为最宝贵的资源,如何有效对数据进行存储、共享以及应用变得愈加重要。在这个新时代,智能化也成为视频监控的新趋势。

一、传统智能视频分析技术的不足

智能视频分析技术利用一些图像处理、模式识别或机器学习等领域的算法来分析视频序列中的信息,以达到理解视频内容的目的,也有人称为视频内容分析。有了智能视频分析技术,我们就可以及时地发现视频中的异常情况,第一时间做出反应,减少损失。

当我们还在憧憬着智能视频分析技术的前景时,现实给所有安防智能化厂商上了沉重的一课。很多智能视频分析技术受限于应用场景,为了得到较好的准确率,往往需要“天时”、“地利”和“人和”。好不容易凑齐了三个要素,提供了非常标准的场景,我们仍可能遇到智能分析“罢工”的情况。其实,问题就出在算法本身上。

首先,传统的智能分析算法通常采取人工选择特征的方法,如尺度不变特征,方向梯度直方图特征,局部二值模式特征等。很明显,特征选择的好坏直接决定着算法准确率的上限。算法研究团队的重点任务变成了投入更多的人力去挖掘出更好的特征。

数据集越大,特征越难发现和选择,就好像一个无底洞一样,不断地试探,不断地积累,时间和人力成本相当之高。而所谓SIFT特征、HOG特征、LBP特征,都是算法人员在某种假设的前提下,寻找特定数据集在某一层面的表示。但这种表示是否真的有效,还是要靠算法人员的经验和运气呢?每种特征都有自己的提取方式,遵循着自己的理论支持,但如果理论假设本身与现实相悖呢?我们无从知晓。

其次,有些智能分析算法模型为浅层学习模型,如支持向量机、逻辑回归等。浅层学习模型通常有01层隐层节点,可以在一定规模的数据集下发挥较强的表达能力。但当数据量不断增大时,这些模型就会处于欠拟合的状态。通俗点说就是数据量太大,模型不够复杂,覆盖不了所有数据。而算法模型无法解析大数据,直接制约了其应用的广度和深度,也限制了其进一步发展的空间。

深度学习技术的兴起,为我们解决了以上问题。在讨论深度学习技术之前,我们先来谈一谈大数据,因为深度学习与大数据密不可分。

二、大数据时代的变革

生活在大数据时代的算法人员是幸运的,停车管理收费系统,因为他们拥有数据;生活在大数据时代的算法人员也可能是不幸的,如果他不懂得如何利用这些数据,陷入数据的汪洋中无从抽身。大数据对智能视频分析技术有着深远的影响意义。

大数据时代为算法研究提供了足够多、足够丰富的训练样本。样本的容量和种类是算法模型是否具有泛化能力的重要因素。换句话说,训练样本集的规模决定了模型能否对训练样本以外的数据有效的解释。传统的算法研究不可避免地要遇到小样本问题为了解决小样本问题,模型中加入了很多技巧性的手段,并都没有本质的区别,小样本仍然存在。大数据时代,问题的解决就变得简单粗暴多了。将所观测到的海量数据扔进模型中训练,只要模型足够复杂,就能够有效地表示这些数据。

大数据时代为算法研究提供了高效的计算工具。前面提到,数据量的增加意味着需要更复杂的模型来诠释它。我们辛辛苦苦构建了一个模型,到头来发现模型无法求解,或者求解的时间远远超出我们的想象。我们只能眼巴巴地看着一堆数据,然后酸酸地说,大数据似乎没那么有用。值得庆幸的是,有人已经走在了前面。无论是分布式计算、并行计算还是云计算,都在为之努力,试图解决日益增长的计算能力需求。

三、深度学习技术的出现

好了新疆停车管理收费系统价格问题的详细介绍就为您介绍到这里了,感谢您的阅读,如需进一步了解它的特点,乌鲁木齐快速门品牌还请您继续关注本公司的新闻动态。如果大家有什么不懂的地方,欢迎来乌鲁木齐快速门品牌!新疆快速门厂家的全体员工邀请您联系18199884455/18199889118/0991-6830509了解更多资讯和产品信息。